
openRocket-modeFrontier Integration 
Integration of openRocket dynamic models and 

modeFrontier MDO software using the EasyDriver node

Nathanael Jenkins 
ICL Rocketry Altitude Record Team


Aerodynamics & Simulations Sub-Team


Created: 24 Mar 2023

Last Edited: 27 Mar 2023


Revision 2



Introduction 
ICL Rocketry uses openRocket for dynamic simulations of rocket designs to validate performance and stability 
targets. Optimising rocket performance is critical, especially for the Altitude Record Team’s record-breaking 
work.


Although openRocket provides some optimisation capabilities, they are not sufficient for the advanced 
optimisation needed to break altitude records. ModeFrontier MDO software is well-suited for multivariable 
problems and makes it easy to integrate other software.


An open-source openRocket API has been developed that interacts with the Java program using a Python 
script for basic simulation capabilities. This makes it easy to run openRocket simulations using the 
modeFrontier Python node. However, this method does not provide the ability to change openRocket design 
parameters, which are stored in a *.ork file in XML format. Additionally, launching the openRocket API on a local 
machine involves loading several databases in parallel, making local execution of concurrent openRocket 
instances computationally intensive. Preventing parallelism from being used for this is surprisingly difficult.


A better approach to integration has been identified using the EasyDriver node to execute simulations on a 
remote high-performance server. The node provides much greater scope for changing design parameters, and 
the use of bash scripting allows the user to better limit the number of cores each instance of openRocket may 
use.


Input Parameters 
openRocket saves files in the *.ork format, which is essentially a compressed XML. By unzipping the *.ork file, it 
is possible to load the uncompressed *.ork file into the ‘input template’ on the EasyDriver node. Any default 
rocket design can be used, provided it includes all of the components the user intends to optimise.


The EasyDriver ‘input template’ makes it easy to highlight parameter values to replace. These can be defined 
for each input variable and linked to input nodes using the ‘introspection’ tool. This generates a unique *.ork file 
in the ‘proc’ directory of each design evaluation.


openRocket-modeFrontier Integration ICL Rocketry Altitude Record Team



Remote Execution 
openRocket simulations are conducted using the generated *.ork file through a simple Python script which 
interacts with the openRocket API. This script is provided below, with explanatory comments where helpful.

openRocket-modeFrontier Integration ICL Rocketry Altitude Record Team



To reduce local computational workload, simulations are conducted on a remote Linux server. The command to 
run this from the EasyDriver node (in the ‘SSH’ commands section) is given below.


Note that this command makes use of the DESIGN_ID environment variable set by modeFrontier, which allows 
the program to cycle through every CPU on the Linux server. The ‘taskset’ command defines which core to 
execute the openRocket instance on. Although not an elegant solution, this has been identified as a means to 
reduce computational workload on the servers. The program cycles through all of the cores in order to prevent 
concurrent evaluations from executing on the same core if one evaluation is delayed for some reason.


The Python file can be saved to a single directory on the server, and it does not then need copying into each 
working directory, reducing optimisation time. It is important to set up the EasyDriver configuration to execute 
by SSH (set a hostname and credentials) to ensure this is executed correctly. This implementation can run 
concurrently without any conflicts. Note that this will generate a large ‘ESTECO’ file in the specified remote 
working directory that can be deleted after each run.


Output Processing 
The Python script shown above writes an ‘output.txt’ to the working directory, which is read by the EasyDriver 
node using similar text parsing to the input template file. These values can then be fed into output variables. 
The Python script can be modified to extract a much larger set of variables if required.

openRocket-modeFrontier Integration ICL Rocketry Altitude Record Team


	Introduction
	Input Parameters
	Remote Execution
	Output Processing

